Classification of ISAR Images Using VIRAF Software

Seung-Jae Lee, Seong-Jae Jeong, Myung-Jun Lee, and Kyung-Tae Kim
POSTECH, Radar & Electromagnetic Signal Processing Lab.

Presenter: Seung-Jae Lee
Contents

1. Inverse synthetic aperture radar (ISAR) image

2. Motivation

3. Classification algorithms using ISAR images

4. Classification results

5. Discussion & Conclusion
ISAR image

- **ISAR imaging**
 - Generation of radar images based on ISAR configurations where the radar stays stationary while the target is in the motion
 - Collection of the received radar signals: a specific frequency bandwidth, a number of aspect angles
 - Image formation: range-Doppler algorithm based on two-dimensional (2D) Fourier transform (FT)
Motivation

- Commercial Software
 - Assistance to mitigate the practical limitation
 - It requires only a computer to obtain the realistic ISAR image
 - FEKO, computer simulation technology (CST), virtual aircraft framework (VIRAF)

 - An efficient graphical user interface (GUI) for ISAR/SAR imaging
 - Acquisition of the DBs for classification tasks in a short amount of time
Motivation

Purpose of this study

- Investigation of the availability of the VIRAF software for classification of ISAR images
- Generation of ISAR images of various targets
 - Well-known physical optics (PO) and physical theory of diffraction (PTD) techniques in the VIRAF software
- Analysis of the classification performance using two different classification methods
 - Nearest neighbor classifier (NNC)
 - Polar-mapping (PM) method with two-dimensional (2D) Fourier transform (FT)
Classification algorithms using ISAR images

- **Preprocessing**

 - **Segmentation**

 - Only target response is extracted from the entire 2D image plane
 - Target pixels that have signal levels above the threshold are selected

 \[
 s(x,y) \text{: 2D ISAR image in dB scale} \quad x=1,2,...,M \quad y=1,2,...,N
 \]

 \(x, y\): down-range and cross-range dimension in the 2D image plane

 \(N, M\): the number of pixels in each dimension

 - **Normalization**

 - Remove signal level variation, arising from different distances between a radar and targets

 \[
 s_n = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} s_{th}(i, j)}{\sum_{i=1}^{M} \sum_{j=1}^{N} s_{th}(i, j)}, \quad s_{th}(i, j) \text{: ISAR image after segmentation}
 \]
Classification algorithms using ISAR images

Nearest neighbor classifier (NNC)

- Euclidean distances between the preprocessed training ISAR images and the unknown ISAR image are first computed as follows:

\[
d_{\text{min}} = \min_d d_k, \quad d_k = \| s_{n,k} - s_{n,te} \|
\]

where:

- \(s_{n,k} \): \(k \)-th training ISAR image after preprocessing,
- \(s_{n,te} \): unknown ISAR image after preprocessing

- The true target class \(c \) is determined as the class of the training ISAR image having the smallest Euclidean distance \(d_{\text{min}} \)
Classification algorithms using ISAR images

- Polar mapping method with 2D Fourier transform (PM+FT)

- Efficient classification method using the PM technique and the characteristics of 2D FT
- 2D FT image has an invariance to the translation of ISAR image
- Resampling the 2D FT image using the PM technique into two orthogonal coordinates, radius r and angle θ

Δr: resampling interval in r direction
$\Delta \theta$: resampling interval in θ direction

R_{max}: radius of the largest circle
R_{min}: radius of the smallest circle

< Polar grid >

< Geometry of polar image >
Classification algorithms using ISAR images

- Polar mapping method with 2D Fourier transform (PM+FT)
 - Polar-mapped image $\mathcal{I}_p (r, \theta)$ can be used as a feature
 - Rotation of ISAR image \rightarrow Translation of polar-mapped image in θ direction
 - This can be solved using correlation-based alignment

< Original ISAR image of F16 > < FT image of F16 > < Polar-mapped image of F16 >
Classification algorithms using ISAR images

Polar mapping method with 2D Fourier transform (PM+FT)

Algorithm summary

1. **Preprocessing**
2. **Upsampling** of the preprocessed ISAR images, construction of 2D FT images, construction of polar-mapped images from the 2D FT images, and sampling A_{tr} and A_{te} from each polar-mapped image for the alignment.
3. **Alignment** of the test image by using the simple correlation coefficient between A_{tr} and A_{te}, compression of polar-mapped images by using the 2D principal component analysis (PCA), and the classification of the compressed image by using NNC.

Classification results

Setup for classification

- Four different 3D CAD aircraft models: Gripen, F16, Mig25, and Yf23

- “**hourglass plot**” option in the VIRAF software to obtain the scattered field data sets by using only rotational component of targets, without translational motion

PO+PTD techniques
Classification results

- Acquisition of the scattered field datasets

- ISAR geometry for the acquisition of the scattered field datasets
- Target whose heading direction is x' was laid on $x'^* - y'$ plane
- Elevation angle θ' was fixed at 90°
- ISAR images were generated only varying azimuth angle ϕ'
- Center azimuth angle $\phi'_{\text{c}} = 0° - 180°$ with steps of 1°
- Whole 181×4 (the number of target) = 724 ISAR images

- Imaging parameters for one ISAR image -

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of frequencies (N)</td>
<td>101</td>
</tr>
<tr>
<td>Number of angles (M)</td>
<td>101</td>
</tr>
<tr>
<td>Center frequency (GHz)</td>
<td>10</td>
</tr>
<tr>
<td>Frequency bandwidth (MHz)</td>
<td>500</td>
</tr>
<tr>
<td>Angular width of ϕ' (Deg)</td>
<td>2.86</td>
</tr>
</tbody>
</table>
Classification results

- Generation of ISAR images
 - 2D windowing and inverse fast FT (IFFT) [built-in functions in the MATLAB program]
 - Two different windows [blackman window and hanning window]
 - Down-range and cross-range resolutions = 0.3m

- ISAR images using blackman window at $\varphi \downarrow \phi' = 45°$

Quite different scattering mechanisms, resulting from the scattering physics of each target
Classification results

Generation of ISAR images

- 2D windowing and inverse fast FT (IFFT) [built-in functions in the MATLAB program]
- Two different windows [blackman window and hanning window]
- Down-range and cross-range resolutions = 0.3m

- ISAR images using hanning window at $\phi \downarrow c^\uparrow = 45^\uparrow$

Quite different scattering mechanisms, resulting from the scattering physics of each target
Classification results

● Construction of databases (DBs)

◆ Training DB
- Uniform sampling across $\varnothing \subset c^r$ with an increment of 5^r
- The number of total training ISAR images $= 37 \times 4 = 148$

◆ Test DB
- Remaining 576 ISAR images

Classification accuracy $\mathcal{P}\downarrow c = \mathcal{N}\downarrow c / \mathcal{N}\downarrow T \times 100(\%)$

$\mathcal{N}\downarrow T$ = total number of test ISAR images
$\mathcal{N}\downarrow c$ = the number of correctly classified ISAR images
Classification results

- Classification accuracies of ISAR images obtained using the two different windows versus the signal-to-noise ratio (SNR)

- Very reliable classification performance
- Reliable DBs for the classification of ISAR images
Discussion & Conclusion

- Windowing and IFFT can be also performed by using “FFT/IFFT” function in the VIRAF software

- Very similar 2D distributions of the dominant scattering centers
- “FFT/IFFT” function in the VIRAF software can also be effectively used for the construction of DBs
Discussion & Conclusion

Conclusion

- We presented the classification of ISAR images using the VIRAF software

- The classification of ISAR images using the VIRAF software can provide a reliable performance

- The VIRAF software are believed to have good potential in the classification of ISAR images
Reference

Thank You

E-mail: jelline15@postech.ac.kr